CSC121				
Word Problem	ns — Mixture	Time: 10 minutes	Calculator: OK	Form M — 1 of 1
Directions:	Always use proper notation! (i.e. for intervals, points, functions, etc.) Unless told otherwise, all numbers			
	in answers shoul	d be as common fractions	in reduced form. (You may al	so use decimal form if the
	value is terminati	ng or proper notation is used	d to denote the repeating digit s	sequence.)

1) A doctor orders a medicine dosage that is A_t milliliters (mL) of a P_t % solution. A nurse has both a P_a % solution and an P_b % solution available in this medicine, but not P_t %. How many milliliters of each available solution should be mixed together to produce the A_t mL dose of P_t % solution?

Word Problems — Mixture		CSC121			Form M — 1 of 1
KE	Y	Time: 10 minutes	Calculato	r: OK	KEY
Directions:	Always use prope	er notation! (i.e. for inte	ervals, points, functions	, etc.) Unless told othe	erwise, all numbers

in answers should be as *common fractions* in *reduced* form. (You may also use decimal form if the value is terminating or proper notation is used to denote the repeating digit sequence.)

1) A doctor orders a medicine dosage that is A_t milliliters (mL) of a P_t % solution. A nurse has both a P_a % solution and an P_b % solution available in this medicine, but not P_t %. How many milliliters of each available solution should be mixed together to produce the A_t mL dose of P_t % solution?

Setting up the chart for what's given I see that:

Solution	Concentration	Amount	Volume
<i>P</i> _{<i>a</i>} %	$\frac{P_a}{100}$	A_a	$\frac{P_a}{100}A_a$
P_b %	$\frac{P_b}{100}$	$A_t - A_a$	$\frac{P_b}{100}(A_t - A_a)$
P_t %	$\frac{P_t}{100}$	A_t	$\frac{P_t}{100}A_t$

I set up my equation by adding the first two entries in the last column and setting their total equal to the last line's last column entry:

$$\frac{P_a}{100}A_a + \frac{P_b}{100}(A_t - A_a) = \frac{P_t}{100}A_b$$

I can then multiply both sides by 100 to rid myself of the fractions before I proceed to solve:

$$100\left(\frac{P_{a}}{100}A_{a} + \frac{P_{b}}{100}(A_{t} - A_{a})\right) = 100\left(\frac{P_{t}}{100}\right)A_{t}$$

$$P_{a}A_{a} + P_{b}(A_{t} - A_{a}) = P_{t}A_{t}$$

$$P_{a}A_{a} + P_{b}A_{t} - P_{b}A_{a} = P_{t}A_{t}$$

$$(P_{a} - P_{b})A_{a} + P_{b}A_{t} = P_{t}A_{t}$$

$$-P_{b}A_{t} - P_{b}A_{t}$$

$$(P_{a} - P_{b})A_{a} = (P_{t} - P_{b})A_{t}$$

$$\div (P_{a} - P_{b}) + \frac{\div (P_{a} - P_{b})}{P_{a} - P_{b}}A_{t}$$

Now back-substituting into the relationship between the two available solutions I find that $A_t - \frac{P_t - P_b}{P_a - P_b}A_t = \frac{P_a - P_t}{P_a - P_b}A_t$.

So the nurse needs $\frac{P_t - P_b}{P_a - P_b} A_t$ mL of the P_a % solution and $\frac{P_a - P_t}{P_a - P_b} A_t$ mL of the P_b % solution to create A_t mL of a P_t % solution.

Word Problems -	- Mixture C	CSC121	
KEY	Time: 10 minutes	Calculator: OK	KEY
Directions: Alw	avs use proper notation! (i.e. for inte	rvals points functions etc.) l	Inless told otherwise all numbers

Directions: Always use proper notation! (i.e. for intervals, points, functions, etc.) Unless told otherwise, **all** numbers in answers should be as **common fractions** in *reduced* form. (You may also use decimal form if the value is terminating or proper notation is used to denote the repeating digit sequence.)

1) A doctor orders a medicine dosage that is A_t milliliters (mL) of a P_t % solution. A nurse has both a P_a % solution and an P_b % solution available in this medicine, but not P_t %. How many milliliters of each available solution should be mixed together to produce the A_t mL dose of P_t % solution?

Setting up the chart for what's given I see that:

Solution	Concentration	Amount	Volume
P_a %	$\frac{P_a}{100}$	A_a	$\frac{P_a}{100}A_a$
P_b %	$\frac{P_b}{100}$	$A_t - A_a$	$\frac{P_b}{100}(A_t - A_a)$
P_t %	$\frac{P_t}{100}$	A_t	$\frac{P_t}{100}A_t$

I set up my equation by adding the first two entries in the last column and setting their total equal to the last line's last column entry:

$$\frac{P_a}{100}A_a + \frac{P_b}{100}(A_t - A_a) = \frac{P_t}{100}A_t$$

I can then multiply both sides by 100 to rid myself of the fractions before I proceed to solve:

$$100\left(\frac{P_{a}}{100}A_{a} + \frac{P_{b}}{100}(A_{t} - A_{a})\right) = 100\left(\frac{P_{t}}{100}\right)A_{t}$$

$$P_{a}A_{a} + P_{b}(A_{t} - A_{a}) = P_{t}A_{t}$$

$$P_{a}A_{a} + P_{b}A_{t} - P_{b}A_{a} = P_{t}A_{t}$$

$$(P_{a} - P_{b})A_{a} + P_{b}A_{t} = P_{t}A_{t}$$

$$-P_{b}A_{t} - P_{b}A_{t}$$

$$(P_{a} - P_{b})A_{a} = (P_{t} - P_{b})A_{t}$$

$$\div (P_{a} - P_{b}) = \div (P_{a} - P_{b})$$

$$A_{a} = \frac{P_{t} - P_{b}}{P_{a} - P_{t}}A_{t}$$

Now back-substituting into the relationship between the two available solutions I find that $A_t = \frac{P_t - P_b}{P_a - P_b}A_t = \frac{P_a - P_t}{P_a - P_b}A_t$. So the nurse needs $\frac{P_t - P_b}{P_a - P_b}A_t$ mL of the P_a % solution and $\frac{P_a - P_t}{P_a - P_b}A_t$ mL of the P_b % solution to create A_t mL of a P_t % solution. Checking our solution against the previous problem which had actual numbers in it, we see that: $A_t = 25, P_t = 50, P_a = 30, \text{ and } P_b = 80$. This gives us the need for $\left(\frac{50 - 80}{30 - 80}\right) 25 = \left(\frac{3}{5}\right) 25 = 15$ mL of the 30% solution and $\left(\frac{30 - 50}{30 - 80}\right) 25 = \left(\frac{2}{5}\right) 25 = 10$ mL of the 80% solution — just as before!