Our goal here is to solve the Fibonacci sequence into closed form again but this time with generating functions!
Let's start with the recurrence relation for the sequence:

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2}, n>1
\end{aligned}
$$

Now, for our generating function. Our goal is a generating function that holds all the Fibonacci numbers as coefficients:

$$
F(z)=\sum_{n \geqslant 0} f_{n} z^{n}=1+z+2 z^{2}+3 z^{3}+5 z^{4}+8 z^{5}+13 z^{6}+\ldots
$$

So let's start by multiplying our recurrence by our z^{n} powers:

$$
f_{n} z^{n}=f_{n-1} z^{n}+f_{n-2} z^{n}, n>1
$$

And now sum up those equations over all valid n values:

$$
\sum_{n>1} f_{n} z^{n}=\sum_{n>1} f_{n-1} z^{n}+\sum_{n>1} f_{n-2} z^{n}
$$

Now, let's make the left side look like $F(z)$ by including the missing terms. This requires us to add them into the sum and remove them outside the sum to maintain equality with what was there before!

$$
-1-1 z+\sum_{n \geqslant 0} f_{n} z^{n}=\sum_{n>1} f_{n-1} z^{n}+\sum_{n>1} f_{n-2} z^{n}
$$

The other two will require a little shifting to line up with the powers and subscripts. Let's factor out some zs:

$$
F(z)-z-1=z \sum_{n>1} f_{n-1} z^{n-1}+z^{2} \sum_{n>1} f_{n-2} z^{n-2}
$$

Now we can substitute $k=n-1$ and $m=n-2$ to simplify the right-side summations:

$$
F(z)-z-1=z \sum_{k>0} f_{k} z^{k}+z^{2} \sum_{m \geqslant 0} f_{m} z^{m}
$$

Now the m summation is ready to be $F(z)$ and the k one is just a single term off, so:

$$
F(z)-z-1=z(F(z)-1)+z^{2} F(z)
$$

Next we collect the $F(z)$ terms to the left side and everything else to the right:

$$
\begin{array}{ll}
F(z)-z F(z)-z^{2} F(z) & =z-z+1 \\
F(z)\left(1-z-z^{2}\right) & =1 \\
F(z) & =\frac{1}{1-z-z^{2}}
\end{array}
$$

And this should be it, right? But that's just the generating function! We don't have the closed form, yet. We have a crazy denominator here. It looks like:

$$
1-z-z^{2}=(1+a z)(1+b z)
$$

But for what a and b ? Well, it turns out that they are:

$$
\frac{-1 \pm \sqrt{5}}{2}
$$

So, for partial fraction decomposition, we have:

$$
\begin{aligned}
\frac{1}{1-z-z^{2}} & =\frac{A}{1+a z}+\frac{B}{1+b z}=A \sum_{n \geqslant 0}(-a)^{n} z^{n}+B \sum_{n \geqslant 0}(-b)^{n} z^{n} \\
& =\frac{A(1+b z)+B(1+a z)}{(1+a z)(1+b z)}
\end{aligned}
$$

Now, equating the numerators:

$$
\begin{aligned}
1 & =A+A b z+B+B a z \\
& =A+B+(A b+B a) z
\end{aligned}
$$

So, it would seem that $A+B=1$ so we know, for instance, that $B=1-A$. Also:

$$
\begin{aligned}
0 & =A b+B a \\
0 & =A b+(1-A) a \\
-a & =A(b-a) \\
A & =\frac{a}{a-b} \\
& =\frac{5-\sqrt{5}}{10}
\end{aligned}
$$

So, B must be:

$$
\begin{aligned}
B & =1-\frac{a}{a-b} \\
& =\frac{a-b-a}{a-b} \\
& =\frac{b}{b-a} \\
& =\frac{5+\sqrt{5}}{10}
\end{aligned}
$$

Thus our solutions are:

$$
A(-a)^{n}+B(-b)^{n}=\frac{5-\sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n}+\frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

Just like we got before, but with generating functions! Yea!!!

